Regulation of high voltage-operated Ca²⁺ channels by G_i-protein coupled receptors *Zhang HY*, Roubos EW, Jenks BG, Scheenen WJJM Department of Cellular Animal Physiology, University of Nijmegen, Nijmegen

The classic neurotransmitters, dopamine and γ -aminobutyric acid (GABA) are acting through G_i-protein coupled receptors and inhibit α -MSH secretion and Ca²⁺ oscillations of pituitary melanotrope cells in *Xenopus laevis*. The Ca²⁺ oscillations arise from Ca²⁺-influx through high voltage-operated Ca²⁺ channels (VOCC). Previously, we showed L-, N-, P/Q- and a toxin-insensitive R-type VOCC on *Xenopus* melanotropes. Ca²⁺ current (I_{Ca}) is partly inhibited by activation of D₂- and GABA_B-receptors. In this study we determined which types of VOCC are affected. Using the specific VOCC inhibitors, ω -conotoxin GVIA, ω -agatoxin IVA and nifedipine, it is demonstrated that D₂-receptor activation inhibits N-type and R-type currents. In contrast, GABA_B-receptor activation inhibits only the R-type current. Both D₂ and GABA_B inhibitions of the R-type current were reversed by pre-pulse facilitation. We therefore conclude that the R-type current is inhibited by D₂- and GABA_B-receptor activation through a G₁-protein- β/γ subunit-membrane-delimited pathway. The additional inhibition of the N-type Ca²⁺ current following D₂-receptor activation was not reversed by the pre-pulse facilitation. Most likely, this inhibition is through G₁-protein- α -subunit regulatory pathway. In conclusion, in *Xenopus* melanotrope cells, either one or more types of VOCC are inhibited, dependent on the type of G₁-protein-coupled receptor that is activated. Depending on the receptor type, inhibition is more or less pronounced.

HongYan Zhang, Dept. of Cellular Animal Physiology, University of Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, t 024-3652036, e-mail hongyan@sci.kun.nl

Session 16, Wednesday June 2, speaker