PYY_{3.36} increases insulin sensitivity of glucose disposal in mice on a high fat diet

Van den Hoek AM/***, Heijboer AC*/***, Corssmit EPM***, Voshol P*/***, Romijn JA***, Havekes LM*/**/****, Pijl H***

*TNO-Prevention and Health, Gaubius Laboratory, Leiden, **Department of Internal Medicine, ***Department of Endocrinology and Metabolic Diseases, ****Department of Cardiology, Leiden University Medical Center, Leiden

Objective: PYY_{3-36} is released by the gut in response to nutrient ingestion. It inhibits food intake by modulation of the opposing activities of orexigenic neuropeptide Y (NPY) neurons and anorexigenic pro-opiomelanocortin (POMC) neurons in the hypothalamus. We wondered whether PYY_{3-36} can improve insulin sensitivity, because both NPY and POMC have been shown to impact insulin action.

Methods: to address this question, we examined the effect of intravenous PYY_{3-36} on glucose and free fatty acid (FFA) flux as well as muscle and adipose tissue specific glucose uptake during a hyperinsulinemic euglycemic clamp in mice maintained on a high fat diet.

Results: in basal conditions, none of the metabolic parameters was affected by PYY₃₋₃₆. In hyperinsulinemic conditions, glucose disposal was significantly increased in PYY₃₋₃₆-infused compared with vehicle-infused mice (103.8 ± 10.9 *vs*. 76.1 ± 11.4 µmol/min/kg, respectively, P=0.001). Accordingly, glucose uptake in muscle and adipose tissue was greater in PYY₃₋₃₆-treated animals, although the difference with controls did not reach statistical significance in adipose tissue (muscle: $2.1 \pm 0.5 vs$. $1.5 \pm 0.5 \mu$ mol/g tissue, P=0.049; adipose tissue: $0.8 \pm 0.4 vs$. $0.4 \pm 0.3 \mu$ mol/g tissue; P=0.08). In contrast, PYY₃₋₃₆ did not impact insulin action on endogenous glucose production or FFA metabolism.

Conclusion: these data indicate that PYY_{3-36} independently of food intake reinforces insulin action on glucose disposal in mice fed a high fat diet.

Anita M. van den Hoek, TNO-Prevention and Health, Gaubius Laboratory, Zernikedreef 9, 2333 CK Leiden, t 071 518 1396, e-mail <u>am.vandenhoek@pg.tno.nl</u>

Session 11